FOUR MINOR ANTIBIOTICS FROM MACARBOMYCINS

Sir:

Macarbomycin¹⁾, a phosphorus-containing antibiotic, produced by *Streptomyces phaeochromogenes* is a member of the antibiotic group which includes diumycin^{2~4)}, moenomycin^{5~10)} and prasinomycin^{11~18)}. It is closely related to diumycin on the basis of their physico-chemical properties, especially, the absence of 6-deoxyglucosamine. During our studies on the improvement of the producing strain and its large scale production, four new minor antibiotics, named macarbomycins I_a, I_b, II and III, were isolated. In this report, the isolation and characterization of these antibiotics are described.

Crude powder (about 50 % purity) was obtained from the cultured broth of Streptomyces phaeochromogenes by precipitation at pH 3 and DEAE-cellulose column chromatography as described in the previous report¹⁾. As shown in Fig. 1, the crude powder (4.2g) was fractionated into macarbomycin (85.8% of weight), macarbomycins I_{a} (1.07%), I_{b} (1.03%), II (2.65%) and III (9.42%) by repetitive silica gel column chromatography and by DEAE-cellulose column chromatography. When the activity of macarbomycins isolated was determined by the disc method using a standard macarbomycin preparation designated 1,000 mcg*/mg and Staphylococcus aureus 193 as a test organism, the potency of macarbomycin, and macarbomycins I_a , I_b , II and III was found to be 5,470, 3,780, 1,860, 3,170 and 3,460 mcg*/mg, respectively.

As shown in Table 1, all macarbomycins were separated by thin-layer chromatography on silica gel GF_{254} (E. Merck AG) detected with ultraviolet light (2536 Å) and with iodine vapour, and by paper chromatography on Toyo Roshi #51 detecting by bioautography. The physical properties and the elemental analysis of macarbomycins are shown in Tables 2 and 3. Macarbomycin and III show a strong absorption at 257 \sim 258 nm in water, while I_a shows only end absorption and I_b and II show weak absorption at $255 \sim 259$ nm. The phosphorous content of the four macarbomycins I_a , I_b , II and III is slightly less than that of macarbomycin itself. Degradation products of macarbomycins are shown in Table 4. Glycine was found in macarbomycin I_b but not in others. According to

- * Developed with *n*-propanol 2 N NH₄OH (95:5) and (90:10) and eluted with (85:15)
- ** Developed with n-propanol-2 N NH₄OH (90 : 10) and eluted with (85 : 15)
- *** Developed and eluted with 0.05 N NH4OH

Table 1. Rf values of macarbomycins on thinlayer chromatography (tlc) and paper chromatography (pc)

	tlc*	tlc**	pc***
Macarbomycin	0.25	0.33	0.34
Macarbomycin I_a	0.20	0.40	0.55
Macarbomycin I_b	0.20	0.34	0.26
Macarbomycin II	0.15	0.25	0.26
Macarbomycin III	0.30	0.29	0.40

* *n*-Propanol - 2 N ammonia (7:3)

** *i*-Propanol-water - 0.5 N borate buffer, pH 9.0 (70:25:5)

*** n-Butanol - pyridine - water (4:1:4)

SLUSARCHYK's review¹⁴⁾, 8036 RP is the only one antibiotic of this group containing glycine and no 6-deoxyglucosamine. The content of glucosamine or 6-deoxyglucosamine was also examined by paper chromatography in the system *n*-butanol-pyridine-water (6:4:3). The glucose content of macarbomycin III was found to be lower than that of the others. By acid hydrolysis (2N HCl, 100°C, 20 minutes), all macarbomycins gave three kinds of lipids as shown by paper chromatography in the system benzene-chloroform-methanol (8:1:1)¹⁾. The antimicrobial activity of macarbomycins determined by the agar dilution method is shown in Table 5. Macarbomycin, I, and II have strong activity against Gram-positive bacteria including resistant strain of *Staphylococcus* aureus FDA 209P, while macarbomycins $I_{\rm h}$ and

	$[lpha]_{ m D}^{21}$	$[\alpha]_{D}^{21}$ D P (°C)		$\lambda_{\max}^{\mathbf{H_2O}}$		S value	
_	<i>c</i> 1.0, H₂O	D.I. (C)	nm	$E_{1cm}^{1\%}$		5 vuide	
Macarbomycin	+16.0	187~189	257~258	120	32,000	3.4	
Macarbomycin Ia	+17.3	193~196	only en	d abs.	40,000	3.6	
Macarbomycin I _b	+12.3	195	257~258	20	35,000	3.8	
Macarbomycin II	+10.8	191~193	255~259	12	34,000	3.5	
Macarbomycin III	+ 7.2	186~188	$257 \sim 258$	145	48,000	4.0	

Table 2. Physical properties of macarbomycins

* Ultracentrifugation in 0.2 M NaCl-0.02 M sodium phosphate buffer (pH 6.85) by SCHLIEREN method

Table 3. Analysis of macarbomycins*

	С	Н	N	Р
Macarbomycin	47.30	7.21	4.84	1.93
Macarbomycin Ia	46.39	7.29	4.78	1.45
Macarbomycin I _b	45.43	7.42	5.37	1.63
Macarbomycin II	49.75	7.24	4.70	1.35
Macarbomycin III	51.47	7.40	5.72	1.10

* All macarbomycins analyzed as ammonium salt after drying at 80°C for 3 hours.

III show one-fourth to one-tenth the activity of macarbomycin. Macarbomycins I_a and I_b are more active against Gram-negative bacteria than macarbomycin. All macarbomycins have $8\sim60$ times stronger activity against *Escherichia* coli K-12 ML3966 carrying episomes than the

Table 4. Degradation products of macarbomycins

	Macarbo- mycin	Ia	Ib	п	III
Glycine*	_		±		-
Glucosamine (%)**	18	21	17	18	17
Glucose (%)***	22	25	21	22	8
6-Deoxyglucosamine*			_	_	
Chromophore	+	—	\pm	±	-+-
Lipid	+	+	+	+	+
				1	

* Acid hydrolysis (2 N HCl, 100°C, 3 hours)

** ELSON-MORGAN reaction after acid hydrolysis (2 N HCl, 100°C, 3 hours)

*** Orcinol-H₂SO₄ reaction after acid hydrolysis (2 N HCl, 100°C, 3 hours): the corrected values eliminating amounts due to glucosamine

	Minimum inhibitory concentration (mcg*/ml)					
Test organisms	Macarbo- mycin	Ia	I _b	II	III	
Staphylococcus aureus FDA 209P	0.025	0.0125	0.1	0.0125	0.1	
(NB, PC, SM, TC, EM, CP-R)*	0.05	0.05	0.2	0.0125	0.2	
Staphylococcus aureus Smith strain	0.025	0.0125	0.1	0.0125	0.1	
" " strain 193	0.025	0.025	0.2	0.0125	0.2	
Bacillus subtilis PCI 219	>100	>100	>100	>100	>100	
Bacillus cereus ATCC 10702	0.0125	0.025	0.05	<0.006	0.025	
Micrococcus flavus M-16	25	12.5	25	25	25	
Escherichia coli NIHJ	>100	>100	>100	>100	>100	
<i>"</i> B	100	50	50	50	25	
<i>"</i> K-12 W3640	50	25	25	50	25	
" K-12 ML3996	1.6	0.4	0.8	3.125	3.125	
Candida albicans	>100	>100	>100	>100	>100	
Saccharomyces cerevisiae	>100	>100	>100	>100	>100	

Table 5. Antimicrobial activity of macarbomycins

* NB: Novobiocin, PC: Benzylpenicillin, SM: Streptomycin, TC: Tetracycline, EM: Erythromycin, CP: Chloramphenicol, R: resistant

parent strain E. coli K-12 W3630.

Sakiko Takahashi Masashi Miyamoto* Shunzo Fukatsu* Kenji Maeda Hamao Umezawa

Department of Antibiotics, National Institute of Health of Japan *Development Research Laboratory, Meiji Seika Kaisha Ltd., Kawasaki, Japan

Acknowledgements

The authors express our deep thanks to Prof. S. MITSUHASHI, Gunma University, for his kindness to supply the strains *E. coli* K-12 ML3966 and W3630.

(Received June 15, 1973)

References

- TAKAHASHI, S.; A. OKANISHI, R. UTAHARA, K. MAEDA & H. UMEZAWA: Macarbomycin, a new antibiotic containing phosphorus. J. Antibiotics 23: 48~50, 1970
- MEYERS, E.; D.S. SLUSARCHYK, J.L. BOU-CHARD & F.L. WEISENBORN: The diumycins, new members of an antibiotic family having prolonged *in vivo* activity. J. Antibiotics 22: 490~493, 1969
- SLUSARCHYK, W.A.; J.A. OSBAND & F.L. WEISENBORN: The structure of a novel lipid from the antibiotic diumycin. J. Am. Chem. Soc. 92: 4486~4488, 1970
- KIRSCHBAUM, J.; W. A. SLUSARCHYK & F. L. WEISENBORN: Intermolecular bonding of the antibiotic diumycin. J. Pharm. Sci. 59: 749~ 751, 1970
- 5) HUBER, G.; U. SCHACHT, H.L. WEIDEN-MULLER, J. SCHMIDT-THOMÉ, J. DUPHORN & R.

TSCHESCHE: Moenomycin, a new antibiotic. II. Characterization and chemistry. Antimicr. Agents & Chemoth. -1965: 737~742, 1966

- TSCHESCHE, R.; F.X. BROCK & I. DUPHORN: Moenomycin. V. Structuraufkärung des Lipoidteils von Moenomycin. Liebigs Ann. Chem. 720: 58~70, 1968
- TSCHESCHE, R.; F. X. BROCK & I. DUPHORN: Über den Lipidteil Moenocinol des Antibiotikums Moenomycin. Tetrahedron Letters 1968: 2905~2909, 1968
- TSCHESCHE, R.; D. LENOIR & H.L. WEIDEN-MÜLLER: Über die Structur des "Chromophors" in Antibiotikum Moenomycin. Tetrahedron Letters 1969: 141~144, 1969
- SCHACHT, U. & G. HUBER: Moenomycin. VII. Isolation and properties of further components of the antibiotic moenomycin. J. Antibiotics 22: 597~602, 1969
- HUBER, G.: Phosphoglycerate a building block of moenomycin. J. Antibiotics 25: 226~229, 1972
- WEISENBORN, F. L.; J. L. BOUCHARD, D. SMITH, F. PANY, G. MAESTRONE, G. MIRAGLIA & E. MEYERS: The prasinomycins: antibiotics containing phosphorus. Nature 213: 1092~1094, 1967
- KIRSCHBAUM, J.: Molecular association of the antibiotic prasinomycins. J. Pharm. Sci. 57: 690~692, 1968
- 13) SLUSARCHYK, W. A. & F. L. WEISENBORN: The structure of the lipid portion of the antibiotic prasinomycin. Tetrahedron Letters 1969: 659~ 662, 1969
- SLUSARCHYK, W. A.: Chemical and biological aspects of a new family of phosphorus-containing antibiotics. Biotechnol. & Bioeng. 13: 399~407, 1971